This example is taken from the PROPT manual example 44. The example is simular to the previous example Goddard rocket maximum ascent but with slightly different model parameters.

## Problem formulation

The problem formulation is the following:

The states are the rocket velocity $v$, the altitude from the ground $h$ and mass of the rocket $m$. The rocket burns fuel and expels it out the nozzle creating thrust, in the model the fuel flow rate $F$ is the control and the ratio between thrust and change in mass is $T = F \cdot c$.

## Yop implementation

%% Goddard Rocket, Maximum Ascent
% Author: Dennis Edblom
% Create the Yop system
sys = YopSystem('states', 3, 'controls', 1, ...
'model', @goddardRocketModel);
% Symbolic variables
time = sys.t;

% Rocket signals (symbolic)
rocket = sys.y.rocket;

m0 = 214.839;
mf = 67.9833;
Fm = 9.525515;
% Formulate optimal control problem
ocp = YopOcp();
ocp.max({ t_f( rocket.height ) });
ocp.st(...
'systems', sys, ...
... % initial conditions
{ 0  '==' t_0(time)            }, ...
{ 0  '==' t_0(rocket.velocity) }, ...
{ 0  '==' t_0(rocket.height)   }, ...
{ m0 '==' t_0(rocket.mass)     }, ...
... % Constraints
{  0 '<=' t_f( time)          '<=' inf }, ...
{  0 '<=' rocket.velocity     '<=' inf }, ...
{  0 '<=' rocket.height       '<=' inf }, ...
{ mf '<=' rocket.mass         '<=' m0  }, ...
{  0 '<=' rocket.fuelMassFlow '<=' Fm  } ...
);

% Solving the OCP
sol = ocp.solve('controlIntervals', 60);

%% Plot the results
figure(1)
subplot(311); hold on
sol.plot(time, rocket.velocity)
xlabel('Time')
ylabel('Velocity')

subplot(312); hold on
sol.plot(time, rocket.height)
xlabel('Time')
ylabel('Height')

subplot(313); hold on
sol.plot(time, rocket.mass)
xlabel('Time')
ylabel('Mass')

figure(2); hold on
sol.stairs(time, rocket.fuelMassFlow)
xlabel('Time')
ylabel('F (Control)')

%% Model
function [dx, y] = goddardRocketModel(t, x, u)
% States and control
v = x(1);
h = x(2);
m = x(3);
F = u;

% Parameters
D0   = 0.01227;
beta = 0.145e-3;
c    = 2060;
g0   = 9.81;
r0   = 6.371e6;

% Drag and gravity
D   = D0*exp(-beta*h);
F_D = sign(v)*D*v^2;
g   = g0*(r0/(r0+h))^2;

% Dynamics
dv = (F*c-F_D)/m-g;
dh = v;
dm = -F;
dx = [dv;dh;dm];

% Signals y
y.rocket.velocity     = v;
y.rocket.height       = h;
y.rocket.mass         = m;
y.rocket.fuelMassFlow = F;
y.drag.coefficient    = D;
y.drag.force          = F_D;
y.gravity             = g;
end